
Confidential Containers
Sensitive Data and Privacy in Cloud Native Environments

2024-06-19, stackconf 2024 Berlin

Hi!

magnuskulke@microsoft.com
github.com/mkulke

Magnus Kulke
SWE @Microsoft, Azure Core Linux

Itinerary

• Why Confidential Containers?
• Key concepts and technologies
• Demo

Sales Pitch!

Journey towards the Confidential Cloud

https://www.youtube.com/watch?v=7Lr4EPTv6tI

Confidential Computing: Definition

Confidential Computing is the protection of data in use by performing

computation in a hardware-based, attested Trusted Execution

Environment.
Confidential Computing Consortium

https://confidentialcomputing.io/about/

Why be concerned about „Data in Use“?

• Remote compute landscape
• Edge
• Cloud

• Processing sensitive data with strong privacy requirements
• LLM agents

• Multi-party computations
• Train models for fraud detection
• Health data collaboration

• Security
• Reduce fallout of compromises, data leaks

Reminder: VM state is transparent to the Host

State of a Virtual Machine ~
• RAM
• CPU-Register
• Caches
- …

Public Cloud

HostHost

Tenant B VM 2

Tenant A VM 1

Tenant B VM 1

VMM VMM

Detour: inspect memory of a VM

Set a secret in the VM
shell (w/o persisting it)

Start QEMU VM w/
management socket
enabled

Detour: Read Memory of a VM

Create memory dump in
the QEMU management
console

Search for secret in the
dump file

Why Confidential Containers then?

• Confidential Computing (CC) is not trivial to implement and
deploy

• Cloud Native is a popular platform/interface for applications
• Rationale: CC will become accessible and popular once it blends

into the container ecosystem
• Pledge: Application don’t require costly modifications: Lift and

Shift them into a TEE

Key concepts

Trust | Integrity | Attestation

Trust in cloud computing

Trust no one?

Trust in cloud computing

Not quite. There is implicit trust in:
• Our code
• Deployments
• Operations teams
• Cloud service providers
• CPU vendors
• …

Trust in cloud computing

CC wants to shrink the trust boundary:
• Our code
• Deployments
• Operations teams
• Cloud service providers
• CPU vendors (GPU, too)

What/who to trust then?

• Assumption: An environment is not trustworthy by itself
• Hence, we can only trust an entity, which isn’t part of that environment
• A hardware Root of Trust (RoT) is deliberately isolated from the rest of

the environment (e.g. HSM or TPM modules)

Thales PCIe HSM GIGABYTE TPM 2.0 Module

System

RoT

https://cpl.thalesgroup.com/de/encryption/hardware-security-modules/pcie-hsms
https://www.gigabyte.com/de/Motherboard/GC-TPM20#ov

Hardware Root-of-Trust

The general idea is to add a new chip (…) to your computer that you don’t
get to run code on.

Educated Guesswork Blog: Do you know what your computer is running?

https://educatedguesswork.org/posts/verifying-software/

Integrity: What is our machine running?

• Is the running workload really matching our specs?
• Has our application/OS/environment been compromised?
• Measurements: Assess the integrity of a system via cryptographic

hash functions.

=> 1234abcd

Example: Hash as checksum for binaries

$ curl -sLO https://dl.k8s.io/release/v1.29.2/bin/linux/amd64/kubectl

$ curl -sLO https://dl.k8s.io/release/v1.29.2/bin/linux/amd64/kubectl.sha256

$ echo "$(cat kubectl.sha256) kubectl" | sha256sum –check

kubectl: OK

Hash extension

>>> m = hashlib.sha256()

>>> m.update(b'value1')

>>> m.update(m.digest() + b'value2')

>>> m.hexdigest()

'5b848becb4a8d7b1515dbd43472cd3d66e7d027d83fa004d1bb158cf1a248802‘

Hash extension as record of events

• Record sequence of events, e.g., Linux measured boot
• One boot stage measures the next one
• Deterministic, predictable, replayable

• Related concepts: Git, Blockchains

Firmware Bootloader Kernel Root FSInitrd

measures measures measures measures

Example: Disk unlock with TPM

• TPMs have extend-only hash registers (PCRs) and can seal keys
• Boot process is measured into PCRs
• TPM will unseal the disk decryption key only for a given set of PCR

reference values (local attestation)
• A compromised system (FW, kernel, etc.) would not boot

HD
Initrd TPM

PCR0
PCR1

…

Remote Attestation

• Verification and Key Storage/Release is being performed on a
remote system (Verifier, Relying Party)

• RoT hardware will gather measurements about the state of a
system (TPM Quote, Launch Measurement)

• RoT signs measurements with a secret + hw-unique asymmetric
key (Evidence, Attestation Report)

AttesterRoot of Trust Evidence

PCR0
PCR1

…

Measurements

PCR0
PCR1

…

Remote attestation flow (Passport model)

• Evidence can be validated by a trusted, remote Verifier instance
• Verification process asserts:

• Evidence has been generated & signed by an authentic HW RoT
• Measurements match expected Reference Values

• Verifier will yield tokens to retrieve secrets from Key Broker

Verifier

Evidence
PCR0
PCR1

…

Token

Key Broker

SecretToken

Attester

RoT

Data Center

Confidentiality = Integrity + Privacy

CC is a CPU (+ GPU) technology that provides privacy guarantees
for the user in a Trusted Execution Environment (TEE).

TEE

Confidential VM (CVM)

• VM is isolated from Host using memory
encryption and integrity protection

• Secure Processor: Hardware RoT
• HW encryption is a key property of a CC

TEE

Host

RAM

Cache

CPU

Se
cu

re
 P

ro
ce

ss
or

Examples: AMD SEV-SNP, Intel TDX, ARM CCA, IBM SE

Attesting CVMs

• CVM is initialized w/ fixed CPU + RAM State, measured into the TEE
HW as Launch Measurement.

• Guest can request an Attestation Report (AR) from TEE HW,
evidence signed with a sealed key

• AR contains facts about TEE
• Active encryption features
• Launch measurement
• Secure processor firmware revision

• Verifier inspects the AR
• Valid signature? (using certificate chain from HW vendor)
• Encryption features enabled?
• Launch measurement matches reference?

Confidential Containers?

• Integrity
• Trust
• Attestation
• Confidentiality
• Containers
=> Confidential Containers

?

(Simplified) privilege model for Kubernetes

CSP, Infra Operators

Cluster Operators

Developers

Users

Pr
iv

ile
ge

s

Rationale: protect cluster, infra, siblings from malicious users

Model of Trust for Confidential Containers

CSP, Infra Operators

Cluster Operators

Developers

Users

Tr
us

t

Rationale: Protect the Trusted Domain, de-privilege the operators

CVMs + Confidential Containers

• Multiple options w/ various
tradeoffs: Confidential
Cluster/Node/Containers

• Sweet spot: Confidential Pods as
micro VMs alongside unencrypted
Pods

• Prior art for Pod VMs: Kata

Control Plane

Node
PodCVM Pod

Confidentia
l

Container

Node

Reconciling CC’s and Kubernetes’ paradigms

We do not trust the Node in CoCo. Need to measure Pod spec! All
host-injected resources are untrusted!

Host

Pod VM

Storage

Env

Examples:

• Environment vars (REDIS_HOST)
• Storage (EmptyDir)
• Config maps (/etc/nginx)
• Image Layer/Metadata caches
• Runtime APIs (exec, cp)

Covering inherent dynamisms in Pod specs

Example: *_SERVICE_HOST/PORT env
Not something that we can reasonably predict in many clusters

OCI config.json
{
"ociVersion": "1.0.1",
"process": {
"terminal": true,
"user": { "uid": 1000 },
"args": ["/bin/sh"],
"env": { "FOO": "bar" },
},
…

}

abcd1234….

hash

my-policy.rego

process.env[_].FOO == "bar"
user.uid == 1000
…

cdab3412….

hash

OCI config.json

…

verify

Solution: Express dynamic properties in policies. Validate
at launch.
Downside: requires additional tooling/manual work

Confidential Containers, as of today

Asciinema demo

https://asciinema.org/a/666003

Takeaways

• Cloud Native is an attractive platform for Confidential Computing
• Trust + Integrity + Remote Attestation are key concepts that we need to

pick up to leverage CC
• Things are hairy. Confidential Containers have specific, non-trivial

challenges

thx!

Links

• Confidential Containers (github.com)
• confidentialcontainers.org
• Kata Containers (github.com)
• TPM-backed Full Disk Encryption is coming to Ubuntu
• RFC 9334: Remote ATtestation procedureS (RATS) Architecture
• AMD SEV-SNP: Strengthening VM Isolation with Integrity

Protection and More
• Intel® Trust Domain Extensions (Intel® TDX)
• IBM Secure Execution for Linux

https://github.com/confidential-containers
https://confidentialcontainers.org/
https://github.com/kata-containers/kata-containers
https://ubuntu.com/blog/tpm-backed-full-disk-encryption-is-coming-to-ubuntu
https://datatracker.ietf.org/doc/html/rfc9334
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-secure-execution

	Folie 1: Confidential Containers
	Folie 2: Hi!
	Folie 3: Itinerary📋
	Folie 4: Sales Pitch!👔
	Folie 5: Confidential Computing: Definition
	Folie 6: Why be concerned about „Data in Use“?
	Folie 7: Reminder: VM state is transparent to the Host
	Folie 8: Detour: inspect memory of a VM
	Folie 9: Detour: Read Memory of a VM
	Folie 10: Why Confidential Containers then? 🏗️
	Folie 11: Key concepts
	Folie 12: Trust in cloud computing
	Folie 13: Trust in cloud computing
	Folie 14: Trust in cloud computing
	Folie 15: What/who to trust then?
	Folie 16: Hardware Root-of-Trust
	Folie 17: Integrity: What is our machine running?
	Folie 18: Example: Hash as checksum for binaries
	Folie 19: Hash extension
	Folie 20: Hash extension as record of events
	Folie 21: Example: Disk unlock with TPM
	Folie 22: Remote Attestation
	Folie 23: Remote attestation flow (Passport model)
	Folie 24: Confidentiality = Integrity + Privacy
	Folie 25: Confidential VM (CVM)
	Folie 26: Attesting CVMs
	Folie 27: Confidential Containers?
	Folie 28: (Simplified) privilege model for Kubernetes
	Folie 29: Model of Trust for Confidential Containers
	Folie 30: CVMs + Confidential Containers
	Folie 31: Reconciling CC’s and Kubernetes’ paradigms
	Folie 32: Covering inherent dynamisms in Pod specs
	Folie 33: Confidential Containers, as of today
	Folie 34: Takeaways
	Folie 35: Links

