Confidential Containers

Sensitive Data and Privacy in Cloud Native Environments

2024-06-19, stackconf 2024 Berlin

.23 Stackconf

Hi!

Magnus Kulke
SWE @Microsoft, Azure Core Linux

magnuskulke@microsoft.com
github.com/mkulke S® Microsoft Azure

ltinerary -

* Why Confidential Containers?
* Key concepts and technologies

e Demo

Sales Pitch! (gl

Data protection

EXISTING CONFIDENTIAL
ENCRYPTION COMPUTING
B B =
OXWa
X ¢
Data at rest Data in transit Data in use
Encrypt inactive data when stored Encrypt data that is flowing between Protect/encrypt data that is in use,
in blob storage, database, etc. untrusted public or private networks while in RAM, and during computation

N -

Journey towards the Confidential Cloud

https://www.youtube.com/watch?v=7Lr4EPTv6tI

Confidential Computing: Definition

Confidential Computing is the protection of data in use by performing
computation in a hardware-based, attested Trusted Execution

Environment.

Confidential Computing Consortium

https://confidentialcomputing.io/about/

Why be concerned about ,,Data in Use“?

* Remote compute landscape
* Edge
* Cloud

* Processing sensitive data with strong privacy requirements
* LLM agents

* Multi-party computations
* Train models for fraud detection
* Health data collaboration
* Security
* Reduce fallout of compromises, data leaks

Reminder: VM state is transparent to the Host

State of a Virtual Machine ~ Public Cloud
* RAM

* CPU-Register
* Caches

Tenant AVM 1

TenantBVM 1

TenantB VM 2

Detour: inspect memory of a VM

$ gemu-
Start QEMU VM w/
> ne ne T\ accel=kvm, smm=off \
ma nagement SOC ket p drive fi bian-12-nocloud-amdé4.qcow2 -m 1024 \
> -gmp unix .fqmp.Sock,serverzon,waitzoffl
enabled
. localhost login: root
Set a secret inthe VM Linux localhost 6.1.0-21-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.90-1 (2024-05-4
E;t]f;ll (\A//t) F)GBFESIEStIr1§§ |t) The programs 1included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described 1in the
individual files 1in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

Last login: Tue Jun 18 14:10:37 UTC 2024 on ttySoO
root@localhost:~# export VERY_SECRET=hi_stackconf_2024

Detour: Read Memory of a VM

. $ gmp-shell ./gmp.sock
C reate memo ry d um p In & > to the]C_}LIF' low-level shell

Connected to QEMU 8.1.1

the QEMU management
console

gmp_shell/> dump-guest-memory paging=false protocol:file:guest.meml

$ strings guest.mem | grep VERY_SECRET

ESEBERF(:T] f()r ESEB(:FEBt ir] tf]GB export =hi_stackconf_2034
. [K export =hi_stackconf_2034
(lerT1F) f|l€3 oot@localhost:~# export =hi_stackconf_2024

export =hi_stackconf_2024
export =hi_stackconf_2024
export =hi_stackconf_2024

export =hi_stackconf_2024

=hi_stackconf_2024

=hi_stackconf_2024
=hi_stackconf_2024
=hi_stackconf_202

N — B

Why Confidential Containers then? =

_—

* Confidential Computing (CC) is not trivial to implement and
deploy

* Cloud Native is a popular platform/interface for applications

* Rationale: CC will become accessible and popular once it blends
Into the container ecosystem

* Pledge: Application don’t require costly modifications: Lift and
Shift them into a TEE

Key concepts

Trust ¢ |Integrity & |Attestation

Trust in cloud computing

&

Trust no one?

Trust in cloud computing

Not quite. There is implicit trust in:
* QOurcode

* Deployments
* (Operations teams

* Cloud service providers
* CPUvendors

00

Trust in cloud computing

CC wants to shrink the trust boundary:
e Qurcode

* CPUvendors (GPU, too)

What/who to trust then?

* Assumption: An environment is not trustworthy by itself
* Hence, we can only trust an entity, which isn’t part of that environment

* A hardware Root of Trust (RoTl) is deliberately isolated from the rest of
the environment (e.g. HSM or TPM modules)

Thales PCle HSM GIGABYTE TPM 2.0 Module

https://cpl.thalesgroup.com/de/encryption/hardware-security-modules/pcie-hsms
https://www.gigabyte.com/de/Motherboard/GC-TPM20#ov

Hardware Root-of-Trust

The general idea is to add a new chip (...) to your computer that you don’t
get to run code on.

Educated Guesswork Blog: Do you know what your computer is running?

https://educatedguesswork.org/posts/verifying-software/

Integrity: What is our machine running?

* |s the running workload really matching our specs?
* Has our application/OS/environment been compromised?

* Measurements: Assess the integrity of a system via cryptographic
hash functions.

M . =>1234abcd

Example: Hash as checksum for binaries

$ curl -sLO https://dl.k8s.10/release/v1.29.2/bin/1inux/amd64/kubectl

$ curl -sLO https://dl.k8s.10/release/v1.29.2/bin/1inux/amd64/kubectl.sha256

$ echo "$(cat kubectl.sha256) kubectl" | sha256sum -check
kubectl: OK

Hash extension

>>> = hashlib.sha256 ()
>>> m.update(b'value1')

>>> m.update(m.digest() + b'value2')

>>> m.hexdigest()

'5b848becb4a8d7b1515dbd43472cd3d66e7d027d83fa004d1bb158cf1a248802 ¢

Hash extension as record of events

* Record sequence of events, e.g., Linux measured boot
* One boot stage measures the next one
* Deterministic, predictable, replayable

* Related concepts: Git, Blockchains

——l Bootloader — Kernel — Initrd —p Root FS

Mmeasures measures Mmeasures measures

Example: Disk unlock with TPM

* TPMs have extend-only hash registers (PCRs) and can seal keys
* Boot process is measured into PCRs

* TPM will unseal the disk decryption key only for a given set of PCR
reference values (local attestation)

* Acompromised system (FW, kernel, etc.) would not boot

Remote Attestation

* Verification and Key Storage/Release is being performed on a
remote system (Verifier, Relying Party)

* Rol hardware will gather measurements about the state of a
system (TPM Quote, Launch Measurement)

* Rol sighs measurements with a secret + hw-unique asymmetric
key (Evidence, Attestation Report)

Measurements

~ I

PCRO
PCR1

Root of Trust

Attester

Evidence

Remote attestation flow (Passport model)

* Evidence can be validated by a trusted, remote Verifier instance

* Verification process asserts:
* Evidence has been generated & signed by an authentic HW RoTl
* Measurements match expected Reference Values

* Verifier will yield tokens to retrieve secrets from Key Broker

Token
1

Evidence

Key Broker

P

Attester

Token Secret

Confidentiality = Integrity + Privacy

CCisa CPU (+ GPU) technology that provides privacy guarantees
for the user in a Trusted Execution Environment (TEE).

Data Center

TEE e]
5)
N kil 1

Confidential VM (CVM)

* VM isisolated from Host using memory
encryption and integrity protection

e Secure Processor: Hardware RoTl

* HW encryption is a key property of a CC
TEE

Secure Processor

Examples: AMD SEV-SNP, Intel TDX, ARM CCA, IBM SE

Attesting CVMs

e CVM s initialized w/ fixed CPU + RAM State, measured into the TEE
HW as Launch Measurement.

* Guest can request an Attestation Report (AR) from TEE HW,
evidence signed with a sealed key

* AR contains facts about TEE
* Active encryption features
* Launch measurement
* Secure processor firmware revision

* Verifier inspects the AR

* Valid signature? (using certificate chain from HW vendor)
 Encryption features enabled?

e Launch measurement matches reference?

Confidential Containers?

* Integrity [
e Trust [~
e Attestation [

» Confidentiality [
 Containers [/
=> Confidential Containers

(Simplified) privilege model for Kubernetes

Users

Developers

Privileges

Cluster Operators

CSP, Infra Operators

Rationale: protect cluster, infra, siblings from malicious users

Model of Trust for Confidential Containers

Users

Developers

Trust

Cluster Operators

CSP, Infra Operators

Rationale: Protect the Trusted Domain, de-privilege the operators

CVMs + Confidential Containers

* Multiple options w/ various
tradeoffs: Confidential
Cluster/Node/Containers

* Sweet spot: Confidential Pods as
micro VMs alongside unencrypted
Pods

e Prior art for Pod VMs: Kata

Reconciling CC’s and Kubernetes’ paradigms

We do not trust the Node in CoCo. Need to measure Pod spec! All
host-injected resources are untrusted!

66

Examples:

* Environmentvars (REDIS_HOST)
* Storage (EmptyDir)

 Config maps (/etc/nginx)

* |mage Layer/Metadata caches

* Runtime APIs (exec, cp)

Covering inherent dynamisms in Pod specs

Example: *_SERVICE_HOST/PORT env
Not something that we can reasonably predict in many clusters

OCI config.json

{

"ociVersion": "1.0.1",
"process": {
"terminal": true,

"user": { "uild": 1000 1},

"args": ["/bin/sh" 1,

llenvll: { IIFooll: llbarll },

},

1 hash
abcd1234....

Solution: Express dynamic properties in policies. Validate
at launch.
Downside: requires additional tooling/manual work

verify OCI config.json

my-policy.rego

process.env[_].FO0 == "bar"
user.uid == 1000

lhash
cdab3412....

Confidential Containers, as of today

Asciinema demo @

https://asciinema.org/a/666003

Takeaways

* Cloud Native is an attractive platform for Confidential Computing

* Trust + Integrity + Remote Attestation are key concepts that we need to
pick up to leverage CC

* Things are hairy. Confidential Containers have specific, non-trivial
challenges

thx! 4%

Links

* Confidential Containers (github.com)

* confidentialcontainers.org

* Kata Containers (github.com)

* TPM-backed Full Disk Encryption is coming to Ubuntu

« RFC 9334: Remote ATtestation procedureS (RATS) Architecture

* AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More

* Intel® Trust Domain Extensions (Intel® TDX)
* |BM Secure Execution for Linux

https://github.com/confidential-containers
https://confidentialcontainers.org/
https://github.com/kata-containers/kata-containers
https://ubuntu.com/blog/tpm-backed-full-disk-encryption-is-coming-to-ubuntu
https://datatracker.ietf.org/doc/html/rfc9334
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://www.ibm.com/docs/en/linux-on-systems?topic=concepts-secure-execution

	Folie 1: Confidential Containers
	Folie 2: Hi!
	Folie 3: Itinerary📋
	Folie 4: Sales Pitch!👔
	Folie 5: Confidential Computing: Definition
	Folie 6: Why be concerned about „Data in Use“?
	Folie 7: Reminder: VM state is transparent to the Host
	Folie 8: Detour: inspect memory of a VM
	Folie 9: Detour: Read Memory of a VM
	Folie 10: Why Confidential Containers then? 🏗️
	Folie 11: Key concepts
	Folie 12: Trust in cloud computing
	Folie 13: Trust in cloud computing
	Folie 14: Trust in cloud computing
	Folie 15: What/who to trust then?
	Folie 16: Hardware Root-of-Trust
	Folie 17: Integrity: What is our machine running?
	Folie 18: Example: Hash as checksum for binaries
	Folie 19: Hash extension
	Folie 20: Hash extension as record of events
	Folie 21: Example: Disk unlock with TPM
	Folie 22: Remote Attestation
	Folie 23: Remote attestation flow (Passport model)
	Folie 24: Confidentiality = Integrity + Privacy
	Folie 25: Confidential VM (CVM)
	Folie 26: Attesting CVMs
	Folie 27: Confidential Containers?
	Folie 28: (Simplified) privilege model for Kubernetes
	Folie 29: Model of Trust for Confidential Containers
	Folie 30: CVMs + Confidential Containers
	Folie 31: Reconciling CC’s and Kubernetes’ paradigms
	Folie 32: Covering inherent dynamisms in Pod specs
	Folie 33: Confidential Containers, as of today
	Folie 34: Takeaways
	Folie 35: Links

