SYSTEMD-SYSEXT (8

lil

1l ||\l

systemd-sysext

il

“ I| || ‘ i
)

SYSTEMD-SYSEXT(8)

NAME
systemd-sysext, systemd-sysext.service, systemd-confext, systemd-confext.service -
Activates System Extension Images
SYNOPSIS
systemd-sysext [OPTIONS...] COMMAND
systemd-sysext.service
systemd-confext [OPTIONS...] COMMAND
systemd-confext.service
DESCRIPTION

systemd-sysext activates/deactivates system extension images. System extension images
may - dynamically at runtime — extend the /usr/ and /opt/ directory hierarchies with
additional files. This is particularly useful on immutable system images where a
/usr/ and/or /opt/ hierarchy residing on a read-only file system shall be extended
temporarily at runtime without making any persistent modifications.

Room Friedrichshain III | 2024-06-18 | Speaker: Krish

Hi, I'm Krish

Krish Jain

Previous intern working on
Flatcar Linux project (a project
out of Kinvolk, now Microsoft)

e thisis what I will be talking about

Currently at Chainguard (backed
by Sequoia Capital) securing the

software supply chain.
LinkedIn: linkedin.com/in/krishjain02/

Email: krish.jain@rochester.edu

http://linkedin.com/in/krishjain02/
mailto:krish.jain@rochester.edu

For context: why Flatcar Container Linux?

S a

Minimal distribution Secure, immutable Automated, Declarative
i streamlined L.
for containers file system updates provisioning
Reduced Read-only /usr partition Security patches ; Filrst b9°t setl;ip from
i . . t t
dependencies No package installation or Atomic updates and eclarative connguration
Less base software modlﬁcatlﬁqlr;;)f base 05 rollbacks Immutable infrastructure
to manage . . (no custom per-node
Co-ordinated with changes during
Removes entire category Kubernetes control plane oduction
Reduced attack of security threats (update operator) production)
surface area (e.g., runc vulnerability

CVE-2019-5736) Repeatable deployment

Ignition Config

JSON format. Declaration of files, systemdunits, sysext images,
networks, users, filesystems, and partitions

. Referencing data from external resources.

= Applied from initramfs (first-boot flag file for GRUB
sets kernel parameter)

= Compare to cloud-initwhich runs after the initramfs, and on every
boot

Butane Config

. Friendlier YAML format with extras (octal permissions,
j variables for metadata)
Transpiled to Ignition JSON through transpiler“ct”

docker run --rm -i quay.io/coreos/butane:latest < your_configyaml >

your_config.json

J Info: https://www.flatcar.org/docs/latest/provisioning/config-transpiler/

Butane Config Example

variant: flatcar
version: 1.0.0
storage:

files:

- path: /etc/extensions/mydocker.raw
mode: 0644
contents:
source: https://myserver.net/mydocker.raw
- path: /etc/systemd/system-generators/torcx-generator
links:
- path: /etc/extensions/docker-flatcar.raw
target: /dev/null
overwrite: true

- path: /etc/extensions/containerd-flatcar.raw

target: /dev/null

overwrite: true

After boot you can see it loaded in the output of the systemd-sysext command: You can reload the sysext images at runtime by executing

systemctl restart systemd-sysext

HIERARCHY EXTENSIONS SINCE
Jopt none -
Jusr mydocker Wed 2022-03-23 14:16:37 UTC

For podman/python we already have ebuilds within flatcar’s repo.

Documentation > latest > Setup and Operations > Storage Setup > ZFS Extension

ZFS Extension for Flatcar Container Linux

The Flatcar ZFS extension was the first Flatcar extension published, introduced with Flatcar version 3913.0.0 in the Alpha channel. It provides the ZFS Linux kernel
modules and the ZFS CLI tools. Support for ZFS is experimental because the ZFS kernel module lives out-of-tree which means it is not part of the upstream Linux
kernel and any delay in fixing incompatibilities in the ZFS code could mean that we would have to release a Flatcar version without the ZFS extension, meaning that
ZFS users won't be able update until a follow-up Flatcar release brings ZFS support back.

Enabling the extension

Users can enable a Flatcar extensions by writing one name per line to /etc/flatcar/enabled-sysext.conf. To enable the ZFS extension, one has to write the
extension ID z£s as line into the file.

>>Immutable’ness’ ' <<

[_] Flatcar Container Linux has a strong focus on backwards compatibility

|:| Pros:

(1 Reproducible and consistent configuration, e.g., matching a git repository. Flatcar ships a fixed
set of software and users should rely on containers for the rest

Cons

[Since Flatcar ships a fixed set of software versions, users have to rely on containers for everything

D [Limiting if for instance you need to run a different version of docker/containerd or other OS level software

[To run on clouds like AWS/Azure/GCP Flatcar needs the cloud vendor tools like Azure's WAAgent but we

can’t pack all of them into the base

Let’'s break this down (and what the build system | created solves)

[User provides custom software

1 While most software is deployed as containers, this is not possible for certain host-level software such as the container

runtime itself

[One had to place binaries under /opt/bin and keep track of them for updating, or use Torcx to switch the inbuilt
Docker/containerd version to a custom Torcx bundle

1 Now we removed it because with systemd-sysext there is now a more generic solution for IT

Q Flatcar’s inbuilt Docker/containerd versions are in fact systemd-sysext images already :) , so that they will fully disappear

when disabled

@ To help users extend Flatcar with systemd-sysext, we provide build recipes for common software projects and publish

prebuilt extension images in the sysext-bakery repository . (Only static, I worked on the build system for this - build_sysext)

[Since the lifecycle of these extensions is decoupled from Flatcar OS updates, user-provided extensions should consist

of static binaries instead of linking against OS libraries.

[Extensions can be updated with systemd-sysupdate , and the sysext-bakery repository provides the configuration to set it

up.

. Cloud vendor tools

[d To make Flatcar work on the various clouds we often need the OEM images to contain integration software provided by the
cloud vendor. Adding these to the base image would waste disk space for all users and the old approach was to put these
binaries on the Flatcar OEM partition. The problem was that there was no update/rollback mechanism for the scattered files and
the custom location was also not ideal for a good integration due to diverging from an expected standard path.

d Using my build system - build_sysext

0 We are already updating of OEM specific tools

[Now the cloud vendor tools in Flatcar are layered on top of the /usr partition through systemd-sysext images. They are
covered by the Flatcar A/B update/rollback mechanism and provided as additional update payloads by our update server. The
extensions are coupled to the OS version to ensure that they are compatible and, therefore, can make use of dynamic linking to
save disk space.

d Having established a mechanism for A/B-updated extensions that are bound to the OS version, Flatcar has become more
modular. In the past we had to find a compromise between user demands and the image size. The first optional Flatcar extension
we introduced provides the kernel drivers and CLI utilities for the ZFS out-of-tree filesystem. We plan to make more CLI tools
available such as htop or tmux and cover more use cases with a Podman and Incus extension. The NVIDIA kernel driver is also a
candidate for a Flatcar extension. At the same time we can look into reducing the base image size by splitting out some less

common parts such as sssd and Kerberos into extensions, likely pre-enabled for backwards compatibility.

Much todo?

D Extension Loading and System Boot-Up: Extensions currently load late during the boot-up process,
requiring workarounds to apply necessary settings. Proposing to mount extension overlays during the initrd

stage for a fully configured system at boot.

Stability and Integrity of Extensions: Issues with overlay mounts disappearing during extension reloads will
be addressed using the new Linux mount beneath API. Additionally, using dm-verity to ensure the integrity

of extension images with more granular enforcement policies.

Systemd-sysupdate and Downgrade Support: Implementing systemd-sysupdate to run on first boot from
initrd for downloading missing extensions. Introduction of downgrade support in the manifest format to

retract updates if needed.

Systemd-confext and Mutable Overlay Mode: Introduction of a mutable overlay mode in
systemd-confext and systemd-sysext to manage configuration changes more flexibly,

accommodating both traditional and image-based OS requirements.

Flatcar Innovations and Community Involvement: Flatcar is advancing with new features
available in the Stable, Alpha, and Beta channels, aiming to split into composable OS layers.
Encouragement for community participation in systemd-sysext feature testing and

contribution to the sysext-bakery repository.

Thinking Back About The Problem

We have a solution to extend Flatcar that provides a robust update mechanism and and integrates well
with base OS.

With systemd-sysext we can overlay extensions on top of the read-only /usr partition. “New Package
Request”’s issues: fail2ban, podman, incus, kata-containers etc

Allows us to address long-standing feature requests and find new solutions outside of previous
compromises.

0o U0

The team has mentioned systemd-sysext in many conference talks. Now after my work and the work
following that by the team it works :)

tormath1 commented 4 d go Contributor

o 13
W h at I WO r ke d O n l -> Yes, that's true sysext-bakery provides images with static binaries.

This is actually t Site s can use dynamic libraries (e.g built-in «t for Docker, containerd).
Port VMware OEM setup to systemd-sysext image #1144

I was talking about sysext in a generic way, with Flatcar there are three ways to provide sysext images:

Port AWS and OpenStack OEM setup to systemd-sysext image #

e built-in (like Docker or containerd, not statically compiled)
Port GCE OEM setup to systemd-sysext image #1146 « "official extensions" https://www.flatcar.org/d« provisionin xt/#flatcar extensions like ZFS,
)n or Podman (which are not statically compiled)

¢ from the sysext-bakery (static)

Demo (we will work through the docs)

build_sysext is to build OS dependent sysexts (like docker, vendor tools, official Flatcar
D extensions (zfs, Incus is one), kmods, GUI’s etc). Contrary to user-supplied sysexts, these

need careful integration with the base OS. build_sysext is not meant to be a generic
packaging tool; ebuilds built into sysexts with this tool will always need some adoption.

Todo:
The build_sysext tool is now used for the OEM and the internal Docker/containerd

systemd-sysext image.

For Docker and containerd we need to make sure that the files are correctly labeled for

SELinux to work in enforcing mode.

Summary

d Immutable Infra possible even for stateful
d systems Flatcar Container Linux already simplifies
- OS maintenance through immutable A/B updates

and systemd sysext

Choose your strategy for bundling packages onto
base OS.

Thank you!

Krish Jain

LinkedIn: linkedin.com/in/krishjain02/

Email: krish.jain@rochester.edu

Internship Blog Post:
https://www.flatcar.org/blog/2023/07/summer-20

23-my-internship-experience/

Project Website: flatcar.org

GitHub Repos: flatcar
Matrix Room: flatcar:matrix.org to chat about

sysexts!

http://linkedin.com/in/krishjain02/
mailto:krish.jain@rochester.edu
https://www.flatcar.org/blog/2023/07/summer-2023-my-internship-experience/
https://www.flatcar.org/blog/2023/07/summer-2023-my-internship-experience/
http://flatcar.org
https://github.com/flatcar

