
’
Room Friedrichshain III | 2024-06-18 | Speaker: Krish

Hi, I'm Krish
Krish Jain
Previous intern working on
Flatcar Linux project (a project
out of Kinvolk, now Microsoft)

● this is what I will be talking about

Currently at Chainguard (backed
by Sequoia Capital) securing the
software supply chain.
LinkedIn: linkedin.com/in/krishjain02/
Email: krish.jain@rochester.edu

http://linkedin.com/in/krishjain02/
mailto:krish.jain@rochester.edu

Flatcar Container Linux
(Fork of CoreOS Container Linux)

For context: why Flatcar Container Linux?

Minimal distribution
for containers

Reduced
dependencies

 Less base software
to manage

Reduced attack

surface area

 Read-only /usr partition

No package installation or
modification of base OS

files

Removes entire category
of security threats

(e.g., runc vulnerability
CVE-2019-5736)

Automated,
streamlined

updates

Declarative
provisioning

Security patches

Atomic updates and
rollbacks

Co-ordinated with
Kubernetes control plane

(update operator)

First boot setup from
declarative configuration

Immutable infrastructure
(no custom per-node

changes during
production)

Repeatable deployment

Secure, immutable
file system

Ignition Config

❏

❏

❏

JSON format. Declaration of files, systemdunits, sysext images,
networks, users, filesystems, and partitions

Referencing data from external resources.

Applied from initramfs (first-boot flag file for GRUB
sets kernel parameter)

Compare to cloud-initwhich runs after the initramfs, and on every
boot

❏

Butane Config

❏

❏

Info:

Friendlier YAML format with extras (octal permissions,

variables for metadata)
Transpiled to Ignition JSON through transpiler“ct”
docker run --rm -i quay.io/coreos/butane:latest < your_config.yaml >

your_config.json

https://www.flatcar.org/docs/latest/provisioning/config-transpiler/

❏

Butane Config Example
variant: flatcar

version: 1.0.0

storage:

 files:

 - path: /etc/extensions/mydocker.raw

 mode: 0644

 contents:

 source: https://myserver.net/mydocker.raw

 - path: /etc/systemd/system-generators/torcx-generator

 links:

 - path: /etc/extensions/docker-flatcar.raw

 target: /dev/null

 overwrite: true

 - path: /etc/extensions/containerd-flatcar.raw

 target: /dev/null

 overwrite: true

After boot you can see it loaded in the output of the systemd-sysext command: You can reload the sysext images at runtime by executing

systemctl restart systemd-sysext

HIERARCHY EXTENSIONS SINCE

/opt none -

/usr mydocker Wed 2022-03-23 14:16:37 UTC

For podman/python we already have ebuilds within flatcar’s repo.

Immutable Infrastructure

>>Immutable”ness”<<
❏

❏

❏

Flatcar Container Linux has a strong focus on backwards compatibility

❏ Reproducible and consistent configuration, e.g., matching a git repository. Flatcar ships a fixed

set of software and users should rely on containers for the rest

Cons
❏

❏

❏

Since Flatcar ships a fixed set of software versions, users have to rely on containers for everything

Pros:

Limiting if for instance you need to run a different version of docker/containerd or other OS level software

To run on clouds like AWS/Azure/GCP Flatcar needs the cloud vendor tools like Azure's WAAgent but we

can’t pack all of them into the base

Let’s break this down (and what the build system I created solves)

❏

❏ While most software is deployed as containers, this is not possible for certain host-level software such as the container

runtime itself

❏ One had to place binaries under /opt/bin and keep track of them for updating, or use Torcx to switch the inbuilt

Docker/containerd version to a custom Torcx bundle

❏ Now we removed it because with systemd-sysext there is now a more generic solution for IT

❏ Flatcar’s inbuilt Docker/containerd versions are in fact systemd-sysext images already :) , so that they will fully disappear

when disabled

❏ To help users extend Flatcar with systemd-sysext, we provide build recipes for common software projects and publish

prebuilt extension images in the sysext-bakery repository . (Only static, I worked on the build system for this - build_sysext)

❏ Since the lifecycle of these extensions is decoupled from Flatcar OS updates, user-provided extensions should consist

of static binaries instead of linking against OS libraries.

❏ Extensions can be updated with systemd-sysupdate , and the sysext-bakery repository provides the configuration to set it

up.

User provides custom software

❏ Cloud vendor tools

❏ To make Flatcar work on the various clouds we often need the OEM images to contain integration software provided by the

cloud vendor. Adding these to the base image would waste disk space for all users and the old approach was to put these

binaries on the Flatcar OEM partition. The problem was that there was no update/rollback mechanism for the scattered files and

the custom location was also not ideal for a good integration due to diverging from an expected standard path.

❏ Using my build system - build_sysext

❏ We are already updating of OEM specific tools

❏ Now the cloud vendor tools in Flatcar are layered on top of the /usr partition through systemd-sysext images. They are

covered by the Flatcar A/B update/rollback mechanism and provided as additional update payloads by our update server . The

extensions are coupled to the OS version to ensure that they are compatible and, therefore, can make use of dynamic linking to

save disk space.

❏ Having established a mechanism for A/B-updated extensions that are bound to the OS version, Flatcar has become more

modular. In the past we had to find a compromise between user demands and the image size. The first optional Flatcar extension

we introduced provides the kernel drivers and CLI utilities for the ZFS out-of-tree filesystem. We plan to make more CLI tools

available such as htop or tmux and cover more use cases with a Podman and Incus extension. The NVIDIA kernel driver is also a

candidate for a Flatcar extension. At the same time we can look into reducing the base image size by splitting out some less

common parts such as sssd and Kerberos into extensions, likely pre-enabled for backwards compatibility.

Extension Loading and System Boot-Up: Extensions currently load late during the boot-up process,

requiring workarounds to apply necessary settings. Proposing to mount extension overlays during the initrd

stage for a fully configured system at boot.

Stability and Integrity of Extensions: Issues with overlay mounts disappearing during extension reloads will

be addressed using the new Linux mount beneath API. Additionally, using dm-verity to ensure the integrity

of extension images with more granular enforcement policies.

Systemd-sysupdate and Downgrade Support: Implementing systemd-sysupdate to run on first boot from

initrd for downloading missing extensions. Introduction of downgrade support in the manifest format to

retract updates if needed.

Much todo?

❏

Systemd-confext and Mutable Overlay Mode: Introduction of a mutable overlay mode in

systemd-confext and systemd-sysext to manage configuration changes more flexibly,

accommodating both traditional and image-based OS requirements.

Flatcar Innovations and Community Involvement: Flatcar is advancing with new features

available in the Stable, Alpha, and Beta channels, aiming to split into composable OS layers.

Encouragement for community participation in systemd-sysext feature testing and

contribution to the sysext-bakery repository.

Thinking Back About The Problem

❏

We have a solution to extend Flatcar that provides a robust update mechanism and and integrates well
with base OS.

With systemd-sysext we can overlay extensions on top of the read-only /usr partition. “New Package
Request”’s issues: fail2ban, podman, incus, kata-containers etc

Allows us to address long-standing feature requests and find new solutions outside of previous
compromises.

The team has mentioned systemd-sysext in many conference talks. Now after my work and the work
following that by the team it works :)

❏

❏

❏

What I worked on ↓->

Demo (we will work through the docs)

❏
build_sysext is to build OS dependent sysexts (like docker, vendor tools, official Flatcar
extensions (zfs, Incus is one), kmods, GUI’s etc). Contrary to user-supplied sysexts, these
need careful integration with the base OS. build_sysext is not meant to be a generic
packaging tool; ebuilds built into sysexts with this tool will always need some adoption.

Todo:
The build_sysext tool is now used for the OEM and the internal Docker/containerd
systemd-sysext image.
For Docker and containerd we need to make sure that the files are correctly labeled for
SELinux to work in enforcing mode.

Summary

❏

❏

❏

❏

Immutable Infra possible even for stateful
systems Flatcar Container Linux already simplifies
OS maintenance through immutable A/B updates
and systemd sysext
Choose your strategy for bundling packages onto
base OS.

Thank you!
Krish Jain

LinkedIn: linkedin.com/in/krishjain02/
Email: krish.jain@rochester.edu
Internship Blog Post:
https://www.flatcar.org/blog/2023/07/summer-20
23-my-internship-experience/

Project Website: flatcar.org
GitHub Repos: flatcar
Matrix Room: flatcar:matrix.org to chat about
sysexts!

http://linkedin.com/in/krishjain02/
mailto:krish.jain@rochester.edu
https://www.flatcar.org/blog/2023/07/summer-2023-my-internship-experience/
https://www.flatcar.org/blog/2023/07/summer-2023-my-internship-experience/
http://flatcar.org
https://github.com/flatcar

