
1

Zero - instrumentation observability
based on eBPF

June 19, 2024
Peter Zaitsev ,
Co - Founder at Coroot

˽̖̥Я̤ ̥̣̥̄̒
by
Getting to
Know You

2

What is Observability ?

3

What Is
Observability

4

Evolution of
the
Applications

2000s

2020s

Why Observability ?

ÅAvailability
ÅPerformance
ÅCost Management
ÅSecurity

6

First Three
Usually Come
Together
Availability
Performance
Cost

7

4 Pillars of
Observability

ÅMetrics
ÅLogs
ÅTracing
ÅProfiling

8

What is
the Most
Useful?

9

Metrics
ÅHigh Level overview
ÅHow many requests/sec

there are happening?
ÅHow many errors?
ÅIs the Host Down?
Å1000s of metrics may be

collected every second
ÅDisplayed on hundreds of

graphs

10

Logs
ÅStructured and Unstructured Format
ÅHave detailed information on what is

happening
ÅError logs Ь contain detailed information

about cause of errors
ÅExpensive to Produce
ÅExpensive to Store and Analyze
ÅSampling and Filtering is often used

11

Distributed
Tracing
ÅTracks Application Requests as they

Pass through the system
ÅTricky as we need to pass some

Trace_ID between different services
ÅSpan Ь Named, Timed Operation which

represents part of Workflow
ÅGreat for Root Cause Analyses
ÅOften Sampled
ÅExpensive to produce and store

12

Distributed Tracing Example

13

Profiling
ÅWhere CPU Time or Wall Clock time is

Spent
ÅSingle Service or Distributed
ÅLanguage Developer can Understand
ÅComparisons are very helpful
ÅProgramming language specific support

needed

14

Instrumentation
How do we get all that Observability?

15

Types of
Instrumentation
ÅStatic Instrumentation
ÅSpecific Places in the Code can

Produce Metrics, Emit Logs, Traces
ÅLinux ProcFS

ÅDynamic Instrumentation
Å˲ ̨̝̝̠ ˺̟̤̥̣̦̞̖̟̥̥̠̟̒̚ б̟̪̥̙̟̘̒̚в

dynamically
ÅdTrace, eBPF

16

When and Where should
we Instrument?

ÅAlways - On Instrumentation
ÅData is always captured and retained

ÅTemporary Instrumentation
ÅInstrumentation enabled when needed

to diagnose the problems
ÅCanary System Instrumentation
ÅSmall Portion of Systems run additional

(expensive) instrumentation

17

Instrumentation
Challenge

Better observability
comes from more
Instrumentation
If Instrumentation is
Hard it does not get
Done
Swiss Cheese of
Observability

18

Making a
system
observable

ÅCollecting telemetry data: metrics, logs,
traced, profiles
ÅTime - and resource - consuming

process since it requires adding
instrumentation into every
application
ÅHard to achieve 100% coverage

without blind spots (3 rd party and
legacy services)

ÅStoring telemetry data in some
databases

ÅLearning how to troubleshoot your
system using all that data
ÅThe most challenging part

19

Collecting telemetry data

20

˳̖̗̠̣̖ ̨̟̤̖̣̒ ˹̀̈ ̥̠ ̘̥̙̖̣̒˝ ̝̖̥Я̤ ̤̦̤̤̔̕̚ ̈˹˲̅ ̥̠ ̘̥̙̖̣̒ ̠̣ ̨̙̥̒ ̨̖ ̨̟̥̒ ̥̠
know about our apps.

Å SLI (Service Level Indicators): requests, errors, latency
Å Communication with other services or databases: requests, errors, latency
Å Resource - related metrics: CPU, Memory, Disk
Å Network - related metrics: latency, connectivity, packet loss
Å Node - level metrics and logs
Å Runtime - related metrics: GC, Thread Pools, Connection pools, Locks
Å Orchestrator - related metrics
Å Logs to identify application - specific issues
Å Profiles to explain spikes in CPU or Memory usage

Collecting telemetry data

21

Å ˺̥Я̤ ̡̠̤̤̝̖̓̚ ̥̠ ̠̝̝̖̥̔̔ ̝̝̒ ̥̙̖̤̖ ̥̒̒̕ ̨̥̙̠̦̥̚ ̦̤̟̘̚ eBPF, but eBPF allows to
achieve that in MINUTES

Å There are always legacy and 3 rd ̡̣̥̪̒ ̧̤̖̣̖̤̔̚ ̥̙̥̒ ̪̠̦ ̟̔̒Я̥ ̟̤̥̣̦̞̖̟̥̚˟
eBPF ̠̖̤̟̕Я̥ ̢̣̖̦̣̖̚ ̠̖̔̕ ̙̟̘̖̤̔̒ ̟̒̕ ̡̣̖̖̝̠̪̞̖̟̥̤̕˟

Å ̤̦̝̝̪̆̒˝ ̧̡̖̖̝̠̖̣̤̕ ̟̤̥̣̦̞̖̟̥̚ ̠̟̝̪ ̞̠̤̥ ̣̥̝̔̔̒̚̚ ̧̤̖̣̖̤̔̚˝ ̤̠ ̪̠̦ ̟̔̒Я̥ ̖̓
sure that you have no blind spots.

Å Instrumentation is a continuous process, so you need to ensure that every
new service integrates OpenTelemetry SDKs.

A quick intro into eBPF

22

Å A feature of the Linux kernel
Å Allows to run small programs in the kernel - space and call them on any

kernel or app function call
Å Such programs have access to function arguments and returning values
Å Then, they can send some data to a program in the user - space

eBPF is just a way how we can obtain data, we just need to implement
kernel - space and user - space programs

eBPF Illustrated

https://ebpf.io

23

https://ebpf.io/

